144 research outputs found

    Confidence intervals for performance estimates in 3D medical image segmentation

    Full text link
    Medical segmentation models are evaluated empirically. As such an evaluation is based on a limited set of example images, it is unavoidably noisy. Beyond a mean performance measure, reporting confidence intervals is thus crucial. However, this is rarely done in medical image segmentation. The width of the confidence interval depends on the test set size and on the spread of the performance measure (its standard-deviation across of the test set). For classification, many test images are needed to avoid wide confidence intervals. Segmentation, however, has not been studied, and it differs by the amount of information brought by a given test image. In this paper, we study the typical confidence intervals in medical image segmentation. We carry experiments on 3D image segmentation using the standard nnU-net framework, two datasets from the Medical Decathlon challenge and two performance measures: the Dice accuracy and the Hausdorff distance. We show that the parametric confidence intervals are reasonable approximations of the bootstrap estimates for varying test set sizes and spread of the performance metric. Importantly, we show that the test size needed to achieve a given precision is often much lower than for classification tasks. Typically, a 1% wide confidence interval requires about 100-200 test samples when the spread is low (standard-deviation around 3%). More difficult segmentation tasks may lead to higher spreads and require over 1000 samples.Comment: 10 page

    On Albanese torsors and the elementary obstruction

    Full text link
    We show that the elementary obstruction to the existence of 0-cycles of degree 1 on an arbitrary variety X (over an arbitrary field) can be expressed in terms of the Albanese 1-motives associated with dense open subsets of X. Arithmetic applications are given

    Cohomological Hasse principle and motivic cohomology for arithmetic schemes

    Get PDF
    In 1985 Kazuya Kato formulated a fascinating framework of conjectures which generalizes the Hasse principle for the Brauer group of a global field to the so-called cohomological Hasse principle for an arithmetic scheme. In this paper we prove the prime-to-characteristic part of the cohomological Hasse principle. We also explain its implications on finiteness of motivic cohomology and special values of zeta functions.Comment: 47 pages, final versio

    Fuzzy directional enlacement landscapes

    Get PDF
    International audienceSpatial relations between objects represented in images are of high importance in various application domains related to pattern recognition and computer vision. By definition, most relations are vague, ambiguous and difficult to formalize precisely by humans. The issue of describing complex spatial configurations, where objects can be imbri-cated in each other, is addressed in this article. A novel spatial relation, called enlacement, is presented and designed using a directional fuzzy landscape approach. We propose a generic fuzzy model that allows to visualize and evaluate complex enlacement configurations between crisp objects, with directional granularity. The interest and the behavior of this approach is highlighted on several characteristic examples

    Awareness of cognitive decline trajectories in asymptomatic individuals at risk for AD

    Get PDF
    Background: Lack of awareness of cognitive decline (ACD) is common in late-stage Alzheimer’s disease (AD). Recent studies showed that ACD can also be reduced in the early stages. Methods: We described different trends of evolution of ACD over 3 years in a cohort of memory-complainers and their association to amyloid burden and brain metabolism. We studied the impact of ACD at baseline on cognitive scores’ evolution and the association between longitudinal changes in ACD and in cognitive score. Results: 76.8% of subjects constantly had an accurate ACD (reference class). 18.95% showed a steadily heightened ACD and were comparable to those with accurate ACD in terms of demographic characteristics and AD biomarkers. 4.25% constantly showed low ACD, had significantly higher amyloid burden than the reference class, and were mostly men. We found no overall effect of baseline ACD on cognitive scores’ evolution and no association between longitudinal changes in ACD and in cognitive scores. Conclusions: ACD begins to decrease during the preclinical phase in a group of individuals, who are of great interest and need to be further characterized. Trial registration: The present study was conducted as part of the INSIGHT-PreAD study. The identification number of INSIGHT-PreAD study (ID-RCB) is 2012-A01731-42

    Neurite density is reduced in the presymptomatic phase of C9orf72 disease

    Get PDF
    OBJECTIVE: To assess the added value of neurite orientation dispersion and density imaging (NODDI) compared with conventional diffusion tensor imaging (DTI) and anatomical MRI to detect changes in presymptomatic carriers of chromosome 9 open reading frame 72 (C9orf72) mutation. METHODS: The PREV-DEMALS (Predict to Prevent Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis) study is a prospective, multicentre, observational study of first-degree relatives of individuals carrying the C9orf72 mutation. Sixty-seven participants (38 presymptomatic C9orf72 mutation carriers (C9+) and 29 non-carriers (C9-)) were included in the present cross-sectional study. Each participant underwent one single-shell, multishell diffusion MRI and three-dimensional T1-weighted MRI. Volumetric measures, DTI and NODDI metrics were calculated within regions of interest. Differences in white matter integrity, grey matter volume and free water fraction between C9+ and C9- individuals were assessed using linear mixed-effects models. RESULTS: Compared with C9-, C9+ demonstrated white matter abnormalities in 10 tracts with neurite density index and only 5 tracts with DTI metrics. Effect size was significantly higher for the neurite density index than for DTI metrics in two tracts. No tract had a significantly higher effect size for DTI than for NODDI. For grey matter cortical analysis, free water fraction was increased in 13 regions in C9+, whereas 11 regions displayed volumetric atrophy. CONCLUSIONS: NODDI provides higher sensitivity and greater tissue specificity compared with conventional DTI for identifying white matter abnormalities in the presymptomatic C9orf72 carriers. Our results encourage the use of neurite density as a biomarker of the preclinical phase. TRIAL REGISTRATION NUMBER: NCT02590276

    Hierarchical Anatomical Brain Networks for MCI Prediction: Revisiting Volumetric Measures

    Get PDF
    Owning to its clinical accessibility, T1-weighted MRI (Magnetic Resonance Imaging) has been extensively studied in the past decades for prediction of Alzheimer's disease (AD) and mild cognitive impairment (MCI). The volumes of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) are the most commonly used measurements, resulting in many successful applications. It has been widely observed that disease-induced structural changes may not occur at isolated spots, but in several inter-related regions. Therefore, for better characterization of brain pathology, we propose in this paper a means to extract inter-regional correlation based features from local volumetric measurements. Specifically, our approach involves constructing an anatomical brain network for each subject, with each node representing a Region of Interest (ROI) and each edge representing Pearson correlation of tissue volumetric measurements between ROI pairs. As second order volumetric measurements, network features are more descriptive but also more sensitive to noise. To overcome this limitation, a hierarchy of ROIs is used to suppress noise at different scales. Pairwise interactions are considered not only for ROIs with the same scale in the same layer of the hierarchy, but also for ROIs across different scales in different layers. To address the high dimensionality problem resulting from the large number of network features, a supervised dimensionality reduction method is further employed to embed a selected subset of features into a low dimensional feature space, while at the same time preserving discriminative information. We demonstrate with experimental results the efficacy of this embedding strategy in comparison with some other commonly used approaches. In addition, although the proposed method can be easily generalized to incorporate other metrics of regional similarities, the benefits of using Pearson correlation in our application are reinforced by the experimental results. Without requiring new sources of information, our proposed approach improves the accuracy of MCI prediction from (of conventional volumetric features) to (of hierarchical network features), evaluated using data sets randomly drawn from the ADNI (Alzheimer's Disease Neuroimaging Initiative) dataset

    Detection of Epileptogenic Cortical Malformations with Surface-Based MRI Morphometry

    Get PDF
    Magnetic resonance imaging has revolutionized the detection of structural abnormalities in patients with epilepsy. However, many focal abnormalities remain undetected in routine visual inspection. Here we use an automated, surface-based method for quantifying morphometric features related to epileptogenic cortical malformations to detect abnormal cortical thickness and blurred gray-white matter boundaries. Using MRI morphometry at 3T with surface-based spherical averaging techniques that precisely align anatomical structures between individual brains, we compared single patients with known lesions to a large normal control group to detect clusters of abnormal cortical thickness, gray-white matter contrast, local gyrification, sulcal depth, jacobian distance and curvature. To assess the effects of threshold and smoothing on detection sensitivity and specificity, we systematically varied these parameters with different thresholds and smoothing levels. To test the effectiveness of the technique to detect lesions of epileptogenic character, we compared the detected structural abnormalities to expert-tracings, intracranial EEG, pathology and surgical outcome in a homogeneous patient sample. With optimal parameters and by combining thickness and GWC, the surface-based detection method identified 92% of cortical lesions (sensitivity) with few false positives (96% specificity), successfully discriminating patients from controls 94% of the time. The detected structural abnormalities were related to the seizure onset zones, abnormal histology and positive outcome in all surgical patients. However, the method failed to adequately describe lesion extent in most cases. Automated surface-based MRI morphometry, if used with optimized parameters, may be a valuable additional clinical tool to improve the detection of subtle or previously occult malformations and therefore could improve identification of patients with intractable focal epilepsy who may benefit from surgery
    • …
    corecore